This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

第29回日本バーチャルリアリティ学会大会論文集(2024年9月)

空気中での凹凸面なぞり時の指腹部の挙動の

計測システムの精度評価

An Accuracy Evaluation of the Measurement System for Finger Pad Behavior during Tracing on Rough Surfaces in the Air

> 境侑里¹⁾,田川和義^{1),2)} Yuri SAKAI¹⁾, Kazuyoshi TAGAWA^{1),2)}

1) 富山県立大学大学院 工学研究科 (〒939-0398 富山県射水市黒河 5180, {sakai, tagawa}@tagawalab.org)

2) 立命館大学 総合科学技術研究機構 (〒567-8570 大阪府茨木市岩倉町 2-150, 19v00710@gst.ritsumei.ac.jp)

概要:筆者らは,指紋を考慮した Stick-slip シミュレータの構築を行っているが,その評価・改良の ための指標を得るために,空気中での凹凸面なぞり時の指腹部の挙動の計測を,テレセントリック 光学系(テレセントリックレンズ,凹凸透明体,高速度カメラを使用)を用いたシステムにより実現 した.しかし,上記のテレセントリック光学系がマーカ追跡に与える影響(変位の誤差)がどの程度 であるかの精度評価は行われていなかったため,本報ではその評価結果について報告する.

キーワード:精度評価,テレセントリック光学系,Stick-Slip 現象,柔軟手指シミュレータ

1. はじめに

ヒトは、物体を把持したり表面をなぞったりする際、指 に生じる変形や振動を触覚受容器で検出することによっ て、物体の表面構造を知覚している。特に、「つるつる」や 「ざらざら」といった粗さ感の知覚において、指腹部と物 体表面の間の摩擦に起因する皮膚振動が大きく関係して いる[1].また、ヒトは粗面なぞり時に空間的・時間的にコ ーディングされた情報を頼りに知覚している[2][3].この ため、井垣らは指腹部が物体表面に対して固着と滑りを繰 り返す Steik-slip 現象により指腹部に生じる振動をシミュ レータによって再現している[4].さらに、木田らは、MR 画像を基に皮膚の解剖構造を推定した Stick-slip シミュレ ータを構築している[5].しかし、粗面なぞり時の指腹部の 実測データが少ないことから、いずれのシミュレータも実 測に基づいたパラメータとモデルの評価が行われていな い.

粗面なぞり時において,透明試料と空気の屈折率の違い によって光学的な歪みが生じることから,指腹部の挙動の 観察が困難である.この課題に対して,筆者らは,これま でにテレセントリックレンズおよび矩形波状の凹凸透明 体を用いることにより,光学的な歪みを極力排除した状態 での計測が可能なシステムを提案している[6][7].しかし, 上記のテレセントリック光学系がマーカ追跡に与える影 響(変位の誤差)がどの程度であるかの精度評価は行われ ていなかったため、本報では、直径 0.1 mm のドットパタ ーンをマーカとして追跡することにより、計測システムの 精度評価を行う. 直径 0.1 mm のドットパターンを用いる のは、ヒト指腹部の汗腺孔の大きさが約 0.1 mm であり、 筆者らはヒト指の実測において指腹部にマーカをつける 際、摩擦係数への影響を小さくするため、汗腺孔や指紋の 谷部への着色を試みているためである.本報における結果 として、本システムで直径 0.1 mm のドットパターンを追 跡した際の測定誤差の平均値は約 4.04 μmであると推定 された.

2. 関連研究

2.1 柔軟手指シミュレータ

近年,計算機性能の向上により,仮想柔軟手指による実 時間インタラクションが可能となりつつある.広田らは, 皮膚を柔軟体,骨を剛体としてモデル化した柔軟手指シミ ュレータを構築し,仮想物体の把持等の操作性の向上を確 認している[8].しかし,指腹部の指紋が考慮されていない だけでなく,シミュレーション結果の正当性の評価も行わ れていない等の課題がある.

一方,オフラインで時間をかけて計算を行う柔軟手指シ ミュレータもあげられる.前野らは,ヒトの指紋の詳細形 状の力学的な意味を明らかにすることを目的とし,指紋の 断面形状を実測に基づいて詳細に要素分割した指の有限 要素モデルを構築した後に、有限要素モデルを用いた接触 解析および固有振動数・固有モード解析により、指紋は局 所的な滑り情報を生成・検出しやすい形状になっているこ とを示した[9]. 井垣らは、様々な物体の表面粗さに起因す る触覚情報の生成を目標とし、指紋を有する指先の断面モ デルにおいて、非線形を考慮した変形モデルとStick-slip 現 象を考慮可能な接触・摩擦シミュレータを構築している[4]. しかし、このシミュレータは変形や振動の実測値と比較さ れていないため、正当性が評価されていない.

2.2 材料特性等のパラメータ同定

木田らは、MR 画像に基づき、骨・爪・皮下組織・真皮・ 表皮・指紋から構成される指モデルを構築し、実際の指の 変形と比較することにより物理パラメータの妥当性の検 討を行っている[5]. このモデルは、粘性係数と静止摩擦係 数、動摩擦係数のパラメータが未評価である.また、凹凸 の連続の形状での Stick-slip 現象時のパラメータの確認も 必要である.河合らは、ヒト指の皮膚伝搬振動と、200 Hz と 450 Hz の振動触覚刺激に対する触覚閾値を測定し、皮 膚の機械的特性が年齢や性別によって異なることを示し た[10]. この研究では、テクスチャに近いレベルの凹凸形 状をなぞった際の指腹部の変形や振動は計測されなかっ た.

2.3 凹凸面なぞり時の指腹部の計測

2.1 節であげたような柔軟手指シミュレータのモデルや パラメータの総合的な評価のためには、テクスチャに近い レベルの凹凸形状をなぞった際のヒト手指の変形や振動 の実測データが必要である. Levesque らは、指紋の枝分か れ部分や汗腺孔などの特徴的な部分を追跡し、平面・凹面・ 凸面なぞり時の指腹部の歪みを計測した[11]. しかし、計 測の妨げとなるような光学的な歪みが発生しない、なだら かな凹面と凸面で計測された. 金子らは、試料を屈折率の 近いシリコーンオイルの中に沈めることによって、接触面 の凹凸を光学的に透過させる手法を提案した[12]. しかし、 油中と空気中とでは、粗面なぞり時の摩擦特性等が大きく 異なるという問題点があげられる.

2.4 空気中での歪みなし計測のための光学設計

以下に,筆者らが前報にて提案している計測システム [6][7]の光学設計について述べる.

2.4.1 凹凸透明体

本システムでは,厚みが一定の平らな透明板に,図1に 示すようなスリットを鉛直方向から入れた凹凸透明体を 使用する.凹凸部の断面形状は,図1の側面図に示すよう に,凹凸透明体の法線を,2.4.2節にて述べるテレセントリ ックレンズの光軸に対して平行もしくは直交となるよう な形状とする.

2.4.2 テレセントリック光学系による撮影

本システムでは、図2に示すように、ライン状照明から 指腹部表面に対して白色光を照射し、テレセントリックレ ンズにより光軸に対して平行な反射光のみを通過させ、高 速度カメラによって撮影する.この光学系と凹凸透明体を 組み合わせることで、凹凸透明体と空気の屈折率の差に起 因する光学的な歪みを排除することが可能である.

図 2: 計測システムの光学設計

3. 計測システムの精度評価

3.1 実験の流れおよび実験に用いた計測システム

本実験では、普通紙に印刷した直径 0.1 mm のドットパ ターンをマーカとし、y 軸方向の変位を指の実測と同じ手 順で計測することにより、精度評価を行う.本実験で用い る計測システムは、図3に示すように、凹凸透明体、テレ セントリックレンズ、高速度カメラ、LED 光源2台、ラ イン状照明2台、一軸リニアアクチュエータ、水平面Z軸 ステージ、マーカ付き土台で構成されている.

図 3: 計測システムの構成

指腹部の撮影には、高速度カメラ (Photron 社製, FASTCAM Mini WX100) と、倍率 1.0 のテレセントリック レンズ (VS TECHNOLOGY 社製, VS-LTC1-70CO-35/FS) を使用する.撮影速度は 1080 fps とし、解像度は 2048× 2048 pixel であり、分解能は約 10 μ m/pixel である.また、 シャッター速度は 1/1080 s とする.高速度カメラを用いた 撮影においては、高輝度の照明が必要であるため、LED 光源 (U-TECHNOLOGY 社製, UFLS-75-08WNP) からの 光を、ラインライトガイド (U-TECHNOLOGY 社製, UKG50-1500S) により指腹部に照射する.

マーカ付き土台を等速直線運動させるために,一軸リ ニアアクチュエータ(ミスミ社製,LXM2605)に搭載した 水平面 Z 軸ステージ(ミスミ社製,ZLPG60)にマーカ付 き土台を固定する.そして,マーカ付き土台を凹凸透明体 のスリットの上部で,約50 mm/sの速度で等速直線運動さ せる.ここで,マーカ付き土台のドットパターン印刷面と 凹凸透明体は接触させないようにする.

凹凸透明体として、図4に示すように、スリットが入っ た透明アクリル板を使用する.凹部の幅は 0.5 mm,凸部 の幅は1.0 mmとし、NCフライス盤(ORIGINALMIND社 製,KitMillCL420)と直径0.5 mmの樹脂用エンドミル(日 進工具社製,樹脂用エンドミル RSE2300.5×1.5)を用い て、厚さ1.0 mmの透明アクリル板(アクリサンデー社製, アクリル樹脂板 IR-001)に鉛直方向から貫通加工するこ とによってスリットを作成する.ここで、切削によってス リットのエッジ部分に発生するバリを統一させるために、 スリット部分はすべて、送り速度を120.0 mm/min、回転速 度を12000 rpmとして切削する.

図 4: 実験で使用した凹凸透明体 (凹部の幅: 0.5 mm, 凸部の幅: 1.0 mm)

マーカの追跡には, 画像解析ソフトウェア (ImageSYSTEM 社製, TEMA 2020a)を使用する.本実験 では図5に示すように, 横一列に並んだ28点のドットを 追跡する.また,図6に,追跡のテンプレートとしたドッ トの例を示す.

図 5: ドットパターンの計測の様子 (赤色枠内: 追跡のテンプレートとしたドット 28 点)

図 6: 追跡のテンプレートとしたドットの例 (紫色枠内:テンプレート画像,黄色枠内: テンプレートマッチングの探索範囲)

3.2 実験結果

28 点のマーカを画像解析ソフトウェアによって追跡した結果,すべての点において,エッジ部分通過時も含めて追跡可能であることが確認された.本研究では,y軸方向に等速直線運動するマーカの変位と時刻を用いて導出される回帰直線と,実測値との差が,本システムの測定誤差であると考える.時刻のデータは,高速度カメラの撮影速度1080 fpsを基にフレーム数から算出した.回帰直線の切片aは式(1)で求められる.

$$a = \bar{y} - b\bar{x} \tag{1}$$

また、回帰直線の傾きbは式(2)で求められる.

$$b = \frac{\Sigma(x - \bar{x})(y - \bar{y})}{\Sigma(x - \bar{x})^2}$$
(2)

ここで, *x*, *y*はそれぞれ計測時間と,計測始点から終点 までの距離の標本平均である.

28 点のマーカにおいて、上記の式によって得られた切 片と傾きをもつ回帰直線と実測値との差の平均値は、約

4.04 µmであった. Bolanowski らによって、機械受容器の 振動閾値が計測されており、SAI (メルケル触盤)の最 小閾値は約10 µm, FAI (マイスナー小体) および FAII (パチニ小体)の最小閾値はそれぞれ約3 µm,約0.1 µmである[13]. これらの機械受容器の最小閾値と比較す ると、本システムにおける測定誤差の方が大きい.本シ ステムにおける測定誤差の要因を調査するため、図8 に、マーカ1点(ポイント10)における回帰直線と実測 値との差を時間軸上にプロットした結果を示す. マーカ がエッジ部分(図8のグラフ中の水色で示す区間)と重 なる範囲において,回帰直線と実測値との間に大きな差 が発生していることから,本システムの追跡精度向上の ためには、スリットのエッジ部分のバリを削減する必要 があるといえる.また,照明の角度や輝度を調整し,エ ッジ部分周辺の影による輝度差を減少させることで、テ ンプレートマッチングの精度が向上する可能性がある. さらに、マーカの中心を精度よく追跡するために、マー カの大きさや形状の変更を検討する.

4. まとめ

本報では、テレセントリックレンズおよび矩形波状の凹 凸透明体を用いた空気中での凹凸面なぞり時の指腹部の 挙動の計測システムにおいて、印刷したドットパターンを マーカとして追跡することによる精度評価を行った.結果 として、本システムで直径 0.1 mmのドットパターンを追 跡した際の測定誤差の平均値は約 4.04 µmであると推定 された.

今後の課題として、本システムの追跡精度向上のために、 スリットのエッジ部分のバリの削減や、照明の角度・輝度 の調整、マーカの大きさ・形状の変更等を行う必要がある と考えられる.

謝辞 本研究の一部は, JSPS 科研費 20H04234・24K02982 の助成を受けたものです.

参考文献

- M. Natsume, Y. Tanaka, W. M. Bergmann Tiest and A. M. L. Kappers: Skin vibration and contact force in active perception for roughness ratings, IEEE International Symposium on Robot and Human Interactive Communication, pp. 1479-1484, 2017.
- [2] A. I. Weber, H. P. Saal, J. D. Lieber, J. W. Cheng, L. R. Manfredi, J. F. Dammann III and S. J. Bensmaia: Spatial and temporal codes mediate the tactile perception of natural textures, Proc. National Academy of Sciences, 110(42), 2013.
- [3] S. Sakaguchi, K. Saito, N. Arakawa and M. Konyo: The dynamic behavior of skin in response to vibrating touch stimuli affects tactile perception, Wiley, Vol. 29, Issue. 3, 2023.
- [4] 井垣友貴,田川和義,田中弘美:指紋の変形に基づく
 実時間 Stick-Slip シミュレーション,情報処理学会第
 79 回全国大会講演論文集, pp.93-94, 2017.
- [5] 木田昌希,田川和義: MR 画像に基づくヒト指先のモデリングと評価,第26回日本バーチャルリアリティ 学会大会論文集,2021.
- [6] 境侑里,田川和義,広田光一,井上康之,唐山英明: 凹凸面なぞり時における指腹部表面の変位分布のマ ーカレス計測システム,第28回 VR 学会大会論文集, 3D2-06,2023.
- [7] 境侑里,田川和義,広田光一,井上康之,唐山英明: 凹凸面なぞり時における指腹部表面の挙動の計測と 考察 - 指固定方法の改良と凹部幅のみの変更が挙 動に与える影響 -,第 31 回ハプティクス研究会, pp. 20-23, 2023.
- [8] K. Hirota and K. Tagawa: Interaction with virtual object using deformable hand, IEEE Virtual Reality, pp. 49-56, 2016.
- [9] 前野隆司,山田大介,佐藤英成:ヒト指紋形状の力学 的意味,日本機械学会論文集(C 編)71 巻 701 号, pp. 245-250, 2005.
- [10] A. Kawai and Y. Tanaka: Individual differences in skin vibration characteristics and vibrotactile sensitivity at fingertip, IEEE Haptics Symposium, pp. 1-6, 2022.
- [11] V. Levesque and V. Hayward: Experimental evidence of lateral skin strain during tactile exploration, Proc. EUROHAPTICS, Vol. 2003, pp. 6-9, 2003.
- [12] S. Kaneko and H. Kajimoto: Measurement system for finger skin displacement on a textured surface using index matching, Applied Sciences, 10(12): 4184, 2020.
- [13] S. J. Bolanowski, Jr, G. A. Gescheider, R. T. Verrillo, C. M. Checkosky: Four channels mediate the mechanical aspects of touch, J. Acoust. Soc. Am, Vol. 84, Issue. 5, pp. 1680-1694, 1988.