This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

第28回日本バーチャルリアリティ学会大会論文集(2023年9月)

凹凸面なぞり時における指腹部表面の 変位分布のマーカレス計測システム

The Marker-less Measurement System for Displacement Distribution of a Finger Pad during Tracing on a Rough Surface 境侑里¹⁾,田川和義^{1,2)},広田光一³⁾,井上康之¹⁾,唐山英明¹⁾ Yuri SAKAI, Kazuyoshi TAGAWA, Koichi HIROTA, Yasuyuki INOUE, and Hideaki TOUYAMA

 1) 富山県立大学 工学部 情報システム工学科 (〒939-0398 富山県射水市黒河 5180, sakai@tagawalab.org)
 2) 立命館大学 総合科学技術研究機構 (〒525-8577 滋賀県草津市野路東 1-1-1, tagawa@tagawalab.org)
 3) 電気通信大学 (〒182-8585 東京都調布市調布ヶ丘 1-5-1, hirota@vogue.is.uec.ac.jp)

概要:指先で物体に触れた際の触感を提示するには,指紋を含む指腹部に生じる Stick-Slip 現象の 変形・振動を求める必要がある.しかし従来手法では,凹凸面を触れた際の計測が難しい,凹凸面を オイルに浸す必要があった.そこで本研究では,透明な凹凸面なぞり時の指先を,テレセントリック 光学系を用いた高速度カメラで撮影し,汗腺孔を画像処理で追跡することで,空気中での指腹部表 面の変位分布のマーカレスでの計測を行った.その結果,Slip 時に発生するわずかな減衰振動の挙 動も捉えることが可能であることがわかった.

キーワード: 触覚, 計測, Stick-Slip 現象, マーカレス

1. はじめに

近年, VR 技術での物体表面の「つるつる」「ざらざら」 といった摩擦感の提示に関する研究が行われている.物体 をなぞった際,ヒトの指腹部表面では Stick-Slip と呼ばれ る,固着と滑りが交互に現れる振動現象が発生する.ヒト は,Stick-Slip 現象による振動を触覚受容器で検出すること によって,摩擦感を感じている. 昆陽らは,Stick-Slip 現象 を高周波振動によって再現することで,摩擦感の提示を行 っている[1].井上らは,振動に加えて,力・温度の3つの 物理パラメータを提示することで,バーチャル触感を付与 する VR 触覚提示システムを構築している[2].以上のこと から,Stick-Slip 現象による振動をリアルタイムで提示する ことが,表面構造が複雑な触感の再現において有効だと考 えられる.

一方,2010年代半ばごろから,柔軟手のシミュレータが 構築されている.広田らは,共回転系有限要素モデルを用 いた実時間柔軟手シミュレータを開発している[3].

Verschoor らも同様に実時間柔軟手シミュレータを開発し ているが,指先等が受ける反力を考慮した骨格の運動をシ ミュレーションすることで,手の軟組織に過大な変形が生 じることを防いでいる[4].また,井垣らは,指紋を含む指 腹部表面の Stick-Slip シミュレータを構築している[5].し かしながら,いずれの研究もその正当性を評価するために は、指腹部表面の変位分布の実計測結果との比較が必要で ある.

先行研究では,指腹部表面の変位分布はカメラによって 測定されてきた.Levesque らは,指紋の枝分かれ部分や汗 腺孔などの特徴的な部分を追跡し,平面・凹面・凸面なぞ り時の指腹部の歪みを計測した[6].しかし,計測の妨げと なるような光学的な歪みが発生しない,なだらかな凹面と 凸面で計測された.金子らは,試料を屈折率の近いシリコ ーンオイルに沈めることによって,接触面の凹凸を光学的 に透過させる手法を提案している[7].これによって波長 0.6 mm の凹凸面なぞり時の計測が可能であるが,空気中 でのなぞり時とは摩擦特性が大きく変化するという問題 点がある.また,和田らは,テレセントリック光学系を用 いた空気中での指先変形の計測を行っている[8]が,マーカ としてインクを付着させているため,摩擦特性が変化する という問題点がある.

そこで、本稿では、空気中での凹凸面なぞり時における 指腹部表面の変位分布の計測手法を提案する.また、イン ク付着時の摩擦特性の変化を考慮し、Levesque ら同様、汗 腺孔を追跡することによるマーカレス計測システムを提 案する.さらに、計測システムを実際に構築し、凹凸面な ぞり時の汗腺孔の変位の時間変化を計測する.

2. 計測システムの光学設計

以下に、本稿で提案する計測システムの光学設計を述べる.

2.1 歪みなし計測のための光学設計

2.1.1 凹凸透明体

本システムでは、厚みが一定の平らな透明板に、図1に 示すようなスリットを鉛直方向から入れた凹凸透明体を 使用する.凹凸部の断面形状は、図1の側面図に示すよう に、凹凸透明体の法線を2.1.2 にて述べるテレセントリッ ク光学系レンズの光軸に対して平行もしくは直交となる ような形状とすることで、屈折のない、すなわち歪みを排 除した撮影が可能となる.ここで、図1に示すスリットは 一例であり、スリットの幅・間隔の大きさは任意としてよ い.

2.1.2 テレセントリック光学系による撮影

本システムでは、図2に示すように、ライン状照明から 凹凸透明体に対して光を照射し、テレセントリック光学系 レンズにより光軸に対して平行な光のみを通過させる.こ れにより、凹凸透明体の断面と空気中の屈折率に起因する 光学的歪みを排除することができる.

図 2: 計測システムの光学設計

2.2 マーカレス計測のための光源配置

本システムでは、汗腺孔を追跡することによるマーカレ ス計測を行う. 汗腺孔に対して斜め方向からライン状照明 からの光を照射することで、汗腺孔の凹凸を強調させた画 像を得る.また、ライン状照明から凹凸透明体への光の入 射角*θ*は、全反射が起こらない条件下での角度(*θ* = 40°) とした.

3. 実験

本実験では、二章で提案した計測システムを実際に構築 し、空気中での凹凸面なぞり時の指腹部表面の変位分布の マーカレスでの計測を行うことが可能かを確認する.

3.1 実験に用いた計測システムおよび実験の流れ

本実験で用いた計測システムの構成(全体および指先周辺)を図3・図4に示す.本計測システムは凹凸透明体, テレセントリックレンズ,高速度カメラ,ライン状照明, 一軸リニアアクチュエータ,指押付用パイプで構成されている.凹凸透明体として,図5に示すように,幅・間隔が 異なるスリットが入った厚さ1.0 mmの透明アクリル板に,

図3:計測システムの構成(全体)

図 4: 計測システムの構成(指先周辺)

図 5: 実験で使用した凹凸透明体

幅・間隔ともに 1.0 mm のスリットをいれたものを用いた. 厚さを 1.0 mm としたのは,凹部と凸部のどちらにもカメ ラのフォーカスが合うようにするためである.また,なぞ り時の指の押し付けによるアクリル板の歪みを軽減する ための補強材として,厚さ 1.0 mm の透明アクリル板に一 辺が 8 mm の正方形状の穴をあけたものを下に重ねた.撮 影には,高速度カメラ (Photron 社製,FASTCAM Mini WX100)と,テレセントリックレンズ (VS TECHNOLOGY 社製,VS-LTC1-70CO-35/FS)を使用した.撮影速度は 2000 fps とし,解像度は 1 mm あたり 100 pixel である.高速度 カメラを用いた撮影においては,高輝度の照明が必要であ るため,LED 光源 (U-TECHNOLOGY 社製,UFLS-75-08W-NP)からの光を,ラインライトガイド (U-TECHNOLOGY 社製,UKG50-1500S) により指腹部表面に照射した.

本実験では、被験者(40代男性)の右手示指を用いた. PIP 関節部分を等速直線運動させるため、右手示指に指関 節固定用サポータ(サイプラス社製、メディカル指らーく) を装着した上で一軸リニアアクチュエータ(ミスミ社製、 LXM2605)に固定し、指腹部を凹凸透明体のスリットの上 部に乗せた.また、鋼球(ツバキ・ナカシマ社製、SBM-SUJ-13)が入った指押付用パイプ(ミスミ社製,PIJA18-400)を DIP 関節より先の爪側に乗せることで、一定加重とした. 本実験では、パイプと鋼球による総加重を114g、141g、168 gの3つのパターンとした.一軸リニアアクチュエータの 移動速度は51 mm/s とし、10 mmの距離を移動させた.ま た、実験開始直前には、水分を含ませたコットンで指腹部 を適度に湿らせた.

汗腺孔のトラッキングには、画像解析ソフトウェア (ImageSYSTEM 社製, TEMA 2020a)を使用した.図6(黄 色十字部分)に、追跡のテンプレートとした汗腺孔を示す.

図 6:初期位置における画像例 (黄色十字部分:汗腺孔,紫色枠内:テンプレート画 像,黄色枠内:テンプレートマッチングの探索範囲)

3.2 実験結果

図7に、指への加重条件を114g,141g,168gの3つの パターンで計測した際の汗腺孔のy軸方向の変位の時間変 化を示す.グラフの欠損部分は、汗腺孔を含むテンプレー ト画像による追跡が失敗することに起因するものであり、 テンプレート画像内にスリットの境界部分が入り込むこ とにより発生する. 図7に示す、すべての加重条件における汗腺孔の「凹 ①」部分通過時において、わずかな減衰振動を含む波形 が見られた.そこで、凹①部分から直流成分を引いた上 で、y = 0が振動中心となるように平行移動を行ったとこ ろ、図8に示すようにはっきりとした減衰振動が確認さ れた.ここで、減衰振動の始点がマイナス値となってい

るのは、皮膚が凸①部分に固着した状態から解放されて滑 り出す現象によるものである.この減衰振動の周期はそれ ぞれ約0.015s,約0.020s,約0.019sであり、振動周波数は 約66.7 Hz,約50.0 Hz,約52.6 Hzとなる.これらの振動周 波数帯はパチニ小体およびマイスナー小体で検出可能で あり、ヒトはこれらの情報を基にしながら触感を知覚して いると考えられる.本計測システムは、少しノイズが混じ ってはいるが、このような振動波形を計測することができ、 様々な条件下における凹凸面なぞり時の指腹部表面の挙 動の計測が可能であるといえる.

(c) 指先への総加重が 168g の場合

図 8: 凹①部分の直流成分を引いた結果

4. まとめ

本稿では、空気中での凹凸面なぞり時における指腹部表 面の変位分布のマーカレス計測手法を提案した. さらに、 提案した計測システムを実際に構築し、指への加重条件を 3 つのパターンで計測した. 実験結果から、Slip 時の減衰 振動の挙動を捉えることができ、本システムは様々な条件 下における凹凸面なぞり時の指腹部表面の挙動の計測が 可能であるといえる.

今後の課題として,異なるスリット幅やなぞり速度,指 押し付け時の角度,指の湿潤具合などの計測条件を変更し た際の計測があげられる.さらに,凹凸透明体をなぞった 際に,汗腺孔がスリットの境界部分に入り込むことによる 追跡不能部分の削減と,上記の計測結果を基にした柔軟手 のシミュレータの正当性の評価・改良もあげられる.

謝辞 本研究の一部は, JSPS 科研費 20H04234 および栢 森情報科学振興財団の助成を受けたものです。

参考文献

- [1] 昆陽雅司,岡本正吾:振動刺激を用いた疑似力覚提示, 日本ロボット学会誌, Vol.30, No.5, pp.475-477, 2012.
- [2] 井上康之, 中郁己, 加藤史洋, 舘暲: 触原色原理に基 づいた触覚提示システム, 日本バーチャルリアリテ ィ学会論文誌, Vol.25, No.1, pp.86-94, 2020.
- [3] K. Hirota and K. Tagawa: Interaction with virtual object using deformable hand, IEEE Virtual Reality, pp.49-56, 2016.
- [4] M. Verschoor, D. Lobo, and M. A. Otaduy: Soft hand simulation for smooth and robust natural interaction, IEEE conference on virtual reality and 3D user interfaces, pp.183-190, 2018.
- [5] 井垣友貴,田川和義,田中弘美:指紋の変形に基づく
 実時間 Stick-Slip シミュレーション,第79回全国大
 会講演論文集, pp.93-94, 2017.
- [6] V. Levesque and V. Hayward: Experimental evidence of lateral skin strain during tactile exploration, Proc. EUROHAPTICS, Vol.2003, pp.6-9, 2003.
- [7] S. Kaneko and H. Kajimoto: Measurement system for finger skin displacement on a textured surface using index matching, Applied Sciences, Vol.10, No.12: 4184, 2020.
- [8] 和田佳久,田川和義:テレセントリック光学系レンズ 及び凹凸透明体を用いた指先滑りの歪み無し計測法 の提案,電気学会研究会資料, Vol.2021, No.81-88, 2021.