This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

第28回日本バーチャルリアリティ学会大会論文集(2023年9月)

球面配置型超音波触覚ディスプレイの曲率変化による焦点 奥行方向移動の予備的検討

Preliminary Study of Distance Movement of the Focal Point by Curvature Change in Spherical Arrangement Ultrasonic Tactile

Display

今笙羽¹⁾,成田叡賦²⁾,溝口泉²⁾,梶本裕之²⁾

Shoha KON, Eifu NARITA, Izumi MIZOGUCHI and Hiroyuki KAJIMOTO

1) 電気通信大学 情報理工学域 (〒182-8585 東京都調布市調布ヶ丘 1-5-1, shoha.kon@kaji-lab.jp)
2) 電気通信大学 情報理工学研究科 (〒182-8585 東京都調布市調布ヶ丘 1-5-1, {narita, mizoguchi, kajimoto}@kaji-

lab.jp)

概要:集束超音波による圧覚提示において、位相制御を必要としない球面の焦点を利用した手法が 知られている。しかし超音波素子が静的な球面上に固定されるため、圧覚点の移動が制限される。そ こで我々は、素子を取り付ける曲面の曲率を動的に変化させることで、奥行方向の圧覚点の移動を 実現する手法を提案する。本稿ではその予備検討として、曲率の異なる二つの曲面における音響放 射圧分布をメッシュスクリーンの温度変化計測によって観察した。 キーワード:超音波触覚、空中超音波、曲率変化、焦点移動

1. はじめに

触覚や圧覚の提示は、VR 空間への没入感を高める技術 として多く利用されている。特に、空中超音波を用いた 触覚ディスプレイはデバイスとの接触を必要としない提 示手法として知られている。超音波触覚の提示には超音 波素子を平面に規則的に並べたデバイスが主に用いられ、 各素子の位相制御により超音波を集束させることで圧覚 点を作り出す。このような位相制御を利用した超音波焦 点の研究は数多く行われている[1][2][3][4][5]。例えば、 星ら[1]は位相制御により焦点位置を空間に自由に配置で きるようにした。また Carter ら[2]は位相制御を利用して 同時に複数個の焦点を制御する手法を提案した。Fan ら [3]はケーブル駆動の力と超音波触覚フィードバックを統 合し、マルチモーダルな触覚刺激を生成した。Shen ら[4] は超音波焦点の数とその描画速度がユーザの応答にどの ような影響を及ぼすのか調査した。さらに、位相制御され た超音波焦点を応用した研究も存在する。Freemanら[5]は 位相制御を用いた超音波触覚フィードバックと LED によ りユーザの手の位置を補正した。また、Seifiら[6]は、超音 波空中触覚を素早く作成・編集するためのグラフィカルデ ザインツールを紹介した。

一方で、位相制御を必要としない、物理的手法によっ て超音波焦点を形成する手法が存在する。Arigaら[7]は放 物面鏡を使うことで焦点を生成する手法を提案し、また Matsubayashi ら[8]は、要素に分割された反射体上の音場に 対する境界積分方程式を解くことにより、反射超音波を集 束させる方法を提案した。星ら[9]は、球面に超音波素子を 配置することで、球面の中心点に超音波焦点を形成する 手法を提案した。しかし静的な球面に超音波素子を張り 付けた場合、形成された超音波焦点の移動は制限される。 特に球面をパンチルト機構に搭載する状況を想定すると、 焦点位置を上下左右方向に移動することは難しいと考 えられる。

我々は、球面に超音波素子を配置し、その曲率を動的に 変化させることで超音波焦点を奥行方向に移動させるこ とができるのではないかと推測した。曲率の変化による 焦点位置の移動の様子を図1に示す。球面に配置された 超音波素子は球の中心点で焦点を結び、位相制御を行わ ずとも超音波による圧覚点を形成する。曲率が変化すれ ば、超音波焦点はそれに伴い奥行方向に移動する。

本稿では上記手法の予備検討として、奥行方向におけ る超音波焦点の音響放射圧が曲面の曲率によってどのよ うに変化するのかを検証する。音響放射圧の変化はメッ シュスクリーンを用いた温度分布計測[10]により観察する。 実験では曲率の異なる 2 つの曲面に超音波素子を配置し、 それぞれについて奥行方向の温度変化を調査した。

図 1 曲率の変化による焦点位置の移動

2. 実験

2.1 実験システム

本実験の概略図を図 2 に示す。本実験で超音波焦点の 形成に利用したのは、パラメトリック・スピーカー実験キ ット(K-02617,秋月電子通商)である。振動子の共振周波 数は 40kHz であり、オーディオ入力に応じて FM 変調され る。実験キットに同封の超音波素子 50 個を、曲面を形成 するフレームに取り付けて球面を作成した。フレームは10 個の羽から構成され、羽それぞれに超音波素子5つが取り 付けられている。これらのフレームは、その上部に並べら れた超音波素子の先から 10cm, 20cm の位置(図 2 中の結 像距離)に球面の中心点が来るように設計されている(以 下、この機構を超音波焦点形成装置と呼ぶ)。音圧分布の 測定には、メッシュスクリーンによる温度分布測定を用い た。メッシュ (NNO.420S, 日本特殊織物) 表面の温度測定 には、サーモカメラ (FLIR-E6390) を用いた。メッシュス クリーンは水平に固定し、鉛直上向き(図 2 中の z 軸方 向) に超音波焦点形成装置を移動することで、それぞれの 結像距離に作られた焦点に対して、メッシュスクリーンの 高さを変えながら表面の温度を観察した。

図 2 実験システムの概略図

2.2 実験条件

超音波焦点の結像距離は 10cm, 20cm の 2 条件である。 図 3 にそれぞれの高さに焦点を作る超音波焦点形成装置 を示す(図 3 左: 焦点 10cm, 図 3 右: 焦点 20cm)。これ に対してメッシュスクリーンと本装置の距離は、図 2 中 において底面の素子の先端から、5cm から 25cm を 1cm 刻 みにした 21 条件である。焦点の結像位置 2 条件×メッシ ュスクリーンの位置 21 条件の計 42 条件について、測定を 行った。

メッシュスクリーンは、超音波焦点形成装置が置かれ ている床に対して水平に固定されて設置された。また、 サーモカメラはメッシュスクリーンから鉛直上方 15cm の 上に固定されて設置された。

図 3 異なる高さの超音波焦点を形成する超音波焦点形成 装置(左図: 焦点 10cm, 右図: 焦点 20cm)

2.3 実験手順

実験時の様子を図 4 として示す。はじめに焦点を 10cm の位置に形成する超音波焦点形成装置をオーディオ基板 に接続し、メッシュスクリーンに対して、超音波焦点形 成装置を鉛直方向に移動させて、各高さ条件におけるメ ッシュスクリーン表面の温度分布を計測した。温度分布 はメッシュスクリーン配置後、十分時間が経ったのちに 観測を行った。サーモカメラを用いた温度計測において、 計測範囲は 27.4℃から 30.0℃の範囲とした。これは事前 の予備実験から、超音波の音圧分布を計測するのに容易 である温度範囲として利用した。また測定前には事前に 計測を行う室内の温度および湿度を計測した。

焦点 10cm における計測終了後、焦点を 20cm の位置に 形成する超音波焦点形成装置においても同様の作業を行った。

図 4 実験時の様子

3. 実験結果

焦点位置 10cm における計測を始めた際の室内温度は 25.9℃、湿度は 59%であった。また焦点位置 20cm におけ る計測を始めた際の室内温度は 26.1℃、湿度は 53%であ った。

3.1 奥行方向の温度変化

超音波焦点の位置 10cm, 20cm のそれぞれにおいて、奥 行方向の各距離におけるメッシュスクリーンの最大温度 を図 5 として示す。焦点位置 10cm における計測の場合 (図 5 中の青線)、メッシュスクリーン表面の温度が最大 であったのは、メッシュスクリーンの位置が 10cm の場合 で 30.7℃であった。一方で焦点位置 20cm における計測の 場合(図 5 中のオレンジ線)、メッシュスクリーンの温度 が最大であったのはメッシュスクリーンの位置が 20cm の 場合で 29.8℃であった。メッシュスクリーンの位置が焦点 形成位置とはずれている場合、どちらの焦点位置の計測に おいても大きな温度変化は見られなかった。

図 5 奥行方向の各距離におけるメッシュスクリーン表面 の最大温度

3.2 奥行方向の温度分布

焦点 10cm、20cm のそれぞれについて、奥行方向へのメ ッシュスクリーンの温度分布を表したものを図 6 として 示す。

焦点位置 10cm について、メッシュスクリーンの位置が 超音波焦点位置の 10cm に近い高さである場合(図 6 中の 焦点 10cm の 8cm, 9cm, 10cm)、温度が局所的に高くなる部 分が確認できる。しかし焦点位置より奥行方向に大きく ずれた際は、温度が局所的に高くなる場所は確認できない。

焦点位置 20cm について、メッシュスクリーンの位置が 超音波焦点位置の 20cm に近い高さである場合(図 6 中の 焦点 20cm の 18cm, 19cm, 20cm, 21cm)、同様に温度が局所 的に高くなる部分が確認できる。しかし焦点位置より大き くずれた際は温度が局所的に高くなる部分は観察できな い。

メッシュスクリーンと超音波焦点形成装置の距離が近 い場合(図 6 中の 5 cm, 6 cm, 7 cm など)、メッシュスクリ ーンの表面温度は音圧による温度変化がまばらに観察で きる。しかし、メッシュスクリーンと超音波焦点形成装置 の距離が遠い場合、温度が局所的に高くなった部分を除い て、大きな温度変化は見られずメッシュスクリーンの表面 温度は低いことが確認できる。

図 6 奥行方向の温度分布

4. 考察

本実験の測定において確認された、局所的な温度上昇 箇所を観察したメッシュスクリーンの位置は、超音波焦 点を形成した位置と一致するため、図 5 で確認された局 所的な温度上昇箇所は超音波焦点によるものだと考えら れる。また図 6 の結果から、曲率の異なる超音波形成装 置によって形成された焦点は、曲率の違いにより奥行方 向におけるその形成位置も異なると考えられる。これは 当初の想定であった、曲率を動的に変化させることで超 音波焦点を奥行方向に移動させることができるのではな いかという推測を裏付けるものであるといえる。

5. むすび

本研究では、曲率の変化により奥行方向へ超音波焦点 を移動することができると考え、その予備検討として曲 率の異なる曲面においての音響放射圧を観察した。

実験では、超音波素子から 10cm, 20cm の位置に超音波 の音響放射圧を集中させ、その周辺において音響放射圧 による温度変化を観察した。超音波焦点をメッシュスク リーン表面の温度分布により観察することができ、曲率が 異なれば、形成される焦点の位置は奥行方向で異なること が確認できた。

今後は、本実験の内容を踏まえたうえで動的に曲面の 曲率を変化させ、奥行方向へ超音波焦点を自在に動かせ る機構を制作していく。

謝辞 本研究は JSPS 科研費 JP20H05957 の助成を受け たものです。

参考文献

- [1] Takayuki Hoshi, Takayuki Iwamoto, and Hiroyuki Shinoda : Non-contact tactile sensation synthesized by ultrasound transducers, World Haptics 2009 Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2009.
- [2] Tom Carter, Sue Ann Seah, Benjamin Long, Bruce Drinkwater, and Sriram Subramanian : UltraHaptics: multipoint mid-air haptic feedback for touch surfaces, UIST '13: Proceedings of the 26th annual ACM symposium on User interface software and technology, pp. 505-514, 2013.

- [3] Liqiang Fan, Aiquo Song, and Haochen Zhang : Development of an Integrated Haptic Sensor System for Multimodal Human–Computer Interaction Using Ultrasonic Array and Cable Robot, IEEE Sensors Journal, Vol. 22, No. 5, pp. 4634-4643, 2022.
- [4] Zhouyang Shen, Madhan Kumar Vasudevan, Jan Kučera, Marianna Obrist, and Diego Martinez Plasencia : Multipoint STM: Effects of Drawing Speed and Number of Focal Points on Users' Responses using Ultrasonic Mid-Air Haptics, CHI '23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, No. 83, pp. 1-11, 2023.
- [5] Euan Freeman, Dong-Bach Vo, and Stephen Brewster : HaptiGlow: Helping Users Position their Hands for Better Mid-Air Gestures and Ultrasound Haptic Feedback, IEEE World Haptics Conference, 2019.
- [6] Hasti Seifi, Sean Chew, Antony James Nascè, William Edward Lowther, William Frier, and Kasper Hornbæk : Feellustrator: A Design Tool for Ultrasound Mid-Air Haptics, CHI '23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, No. 266, pp. 1-16, 2023.
- [7] Kentaro Ariga, Masahiro Fujikawa, Yasutoshi Makino, and Hiroyuki Shinoda : Midair Haptic Presentation Using Concave Reflector, EuroHaptics 2020: Haptics: Science, Technology, Applications, pp. 307–315, 2020.
- [8] Atsushi Matsubayashi, Kanta Shiku, Yasutoshi Makino, and Hiroyuki Shinoda : Focusing Reflected Ultrasound Using Boundary Element Model for Mid-Air Tactile Presentation, IEEE Transactions on Haptics (Early Access), pp. 1-6, 2023.
- [9] 星貴之:電子工作キットで自作するインタラクティブ音響浮遊装置,情報処理学会論文誌, Vol. 57, No. 12, 2016.
- [10] Ryoya Onishi, Takaaki Kamigaki, Shun Suzuki, Tao Morisaki, Masahiro Fujiwara, Yasutoshi Makino, and Hiroyuki Shinoda : Two-Dimensional Measurement of Airborne Ultrasound Field Using Thermal Images, Phys. Rev. Applied 18, 2022.