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Abstract: Popular VR games such as Beat Saber gathered terabytes of game replays, with clear

motor skills shown by hand speeds and head angles. To unlock more insights into VR skill acqui-

sition, we cluster the motion by latent vectors from an auto-encoder model. We identify a diverse

progression of motion motif usage from novices to experts. We also show the model’s potential in

predicting players’ accuracy improvements, hinting at new model-based skill transfer methods.
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1. Introduction

From a toddler’s clumsy steps to a golf player’s con-

fident swing, learning a motor skill is not always easy.

Lucky for us, we can also help ourselves with the poten-

tial of virtual reality (VR) and machine learning (ML)

technology. By analyzing and manipulating the interac-

tion between users and the virtual environment, we could

better understand and help motor skill learning in VR.

Existing research for skill transfer in VR seems to cen-

ter around motion recordings from experts or replays. As

demonstrated in the CanKendama study [1], recorded

expert motion, in addition to slower speed in the vir-

tual environment, helped novices learn a not-so-simple

Kendama trick. In more professional settings, SPinPong

[2] successfully applied visual, haptics, and temporal guid-

ance to returning spin shots in table tennis. This study

found that visually displaying a recorded racket over the

player’s body works the best among tested conditions.

Going beyond recorded motion, a recent study [3] also

explored active skill transfer methods using “virtual co-

embodiment”. In the study, teachers and students shared

control over an avatar, performing a demanding dual task

where each hand is reaching a different target simulta-

neously. Here, the co-embodiment scheme outperformed

overlayed movements, suggesting the need beyond simply

displaying the teacher’s movements when the task is com-

plex enough to require integrated, unconscious moves.

In addition to in-game applications, game replays could

also provide insights on skill learning. For example, List-

man et al. [4] examined performance data on Aim Lab1,

an FPS (First Person Shooting games) trainer. The re-

sults revealed an imbalance between acuity and accuracy

1https://www.aimlab.gg/

improvements, which concurred with existing literature

and validated the use of gameplay data for motor learning

studies. A more recent example looked at Beat Leader2,

a community leaderboard for the VR rhythm game Beat

Saber. In the game, players cut approaching blocks to

the beats with their lightsabers, generating motion data

as they play. From the data, the study[5] accurately

identified over 50,000 players using only their head and

hand movements. Besides biometrics data such as height

and arm length, movement patterns are also key to their

model, suggesting a personalized skillset.

Following these works, we analyze the same Beat Leader

replay dataset further to understand how experts play

the game and how novices could learn to get there. We

first look for simple metrics to validate and argue for the

existence of highly skilled experts in the game (RQ1).

Then, we use an auto-encoder model to reveal how the

patterns of motions change along ranks, hoping to under-

stand how one might become a master (RQ2). Finally,

we look at the increment steps along this path towards

mastery, and ask how well our model identifies actions

that lead to accuracy gain(RQ3).

Key findings from our analysis are:

• Experts have higher hand movement speeds and

better head synchronization with incoming blocks.

• Novices start from similar clusters of movements,

but experts become more diverse in their profiles.

• Encodings from the same player predict accuracy

gain better than baseline and cross-player ones.

We then discuss how the results could lead to more

effective and personalized skill transfer methods in VR.

2https://www.beatleader.xyz/
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Table 1: Dataset Statistics

Subset No. Scores Average Accuracy (± std)

Full 4,227,434 80 % (± 17)

1 652 74 % (± 14)

2 5,763
81 % (± 15) before

85 % (± 12) after

2. Methods

2.1 Dataset

The official Beat Saber game doesn’t support leader-

boards on custom songs, so enthusiasts come up with

their own systems. Beat Leader is a community leader-

board launched in early 2022. It aims to be transpar-

ent, open-sourcing all components and importantly fea-

tures a high-quality replay module. The openly available

replays make it well-suited for our purposes. We ob-

tained 4,227,434 scores (gameplays) from the public API

in 2023-04 (also dumped here3). Each score is linked with

a leaderboard/map, a player, and a replay.

Leaderboards are centered around a song map on which

all scores from the board are obtained. The ‘map’ is a

game level that includes a song track, a set of block posi-

tions syncing to the beats, and other additional gaming

elements such as walls, bombs, or other extensions.

Players cut approaching blocks to get scores based

on their timing, positional accuracy, and magnitudes of

swings. Besides the accuracy of a single cut, ‘accuracy’ is

also used to describe the overall score on a song, defined

as a player’s score divided by the maximum possible.

Finally, replays, as introduced before, are the recorded

motion data of the player throughout the map, contain-

ing positions and rotations for the head and hands. The

entire dataset consists of terabytes of recordings, reach-

ing far beyond our computational budgets at the time.

Therefore, we have decided to narrow down to the follow-

ing two subsets of data: first on a single, well-designed

map to understand the expert’s motion, then a set of

successful improvements across all maps to study the in-

crement of accuracy. Counts and score accuracy statistics

are shown in Table 1.

2.1.1 Subset 1: One particular map

To help people find suitable maps to play, the Beat

Leader team maintains a rank system for map difficulty.

Each popular map the community suggests will go through

an objective ranking process4 to determine its playabil-

ity and difficulty. To ensure a good basis for analysis, we

start from such a ranked map.

The rank of a map is represented in stars. From the

3https://discord.gg/2RG5YVqtG6
4https://beatleader.wiki/en/criteria

easiest (0-1 stars) to the craziest maps (14 stars), all play-

ers should be able to find a good quality map at their

level. For our purpose, we choose to select a moderately

challenging map at 8.3 stars total5. As shown in Table 1,

its score accuracy is lower than other subsets, indicating

its difficulty and hence suitability for expert analysis.

2.1.2 Subset 2: Improvements over all maps

To find out a player’s improvements over time, we need

to have multiple recordings of the same player passing

the same song map. However, due to collisions of replay

names (which only contain playerId and leaderboardId),

newer replays always override previous ones. Fortunately,

over a short period of API change (from 11 Mar 2023

to 11 Apr 2023), BeatLeader briefly included scoreId in

replay names, leaving a full history of 244,759 records.

Out of the 245k fully named replays, only 5,763 are

repeating entries coming from the same player on a map,

and only 31 of them are three-time challengers. Note this

is a very small subset of scores (only about 1% during the

period), suggesting either the scarcity of super enthusi-

astic players or the difficulty of song maps in general.

We group the entries by player and map and get 2,866

records of improvements. We use the first and last scores

within a group as the performance before and after im-

provement, shown in Table 1. While the average improve-

ment is only 4%, considering the starting point, this is a

hard-won achievement. For this report, we further filter

through the subset, and focus only on the improvements

that have more than 10% of accuracy gain, to reveal how

a novice managed to vastly improve their skills.

2.2 Analysis & Model

For RQ1, we look at basic metrics about a player’s

movements. In particular, we calculate the average speed

for each hand to study motor execution; we also com-

pute the correlation between head direction and incoming

block position to measure input responses. We then com-

pare the metrics between an expert group (top 10 players

in Subset 1) and a novice group (bottom 10), thus giving

basic characteristics about an expert’s move.

To further understand the complex motion patterns

learned by these master players, we seek help from pow-

erful ML and deep-learning techniques. Previous works

[6, 7] had successfully applied neural networks to high-

level identification of motion data. In these studies, the

model could represent a short window of movements in

succinct codes or a latent vector. Clustering on such

vectors gives labels of recurring units of movements, or

motion motifs. The distribution of motion motif used in

a clip, then, would become the signature of it. For exam-

ple, it can indicate the type of dance performed, or the

5https://www.beatleader.xyz/leaderboard/global/4a2a91/
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Fig. 1: Boxplots of movement metrics

behavior of an explorative mouse.

For this study, we adapted the auto-encoder model in

[7], which includes both an encoder and a decoder. This

is preferable for our application since the decoder can

generate novel motion sequences to suit each player.

Applying the model to RQ2, we calculate latent vectors

and motif labels for each frame of the replays in Subset

1. Since the labels don’t necessarily correspond to well-

defined moves without properly tuning the algorithm, we

focus on the overall distribution as the signature of each

playthrough, as in [6]. Then, we use entropy to mea-

sure how concentrated the distribution is, and group by

player’s rankings on scores, thus describing how experts

utilize a variety of motifs in contrast to novices.

For RQ3, we compare distance measures for accuracy

improvement prediction (by R2 values on linear regres-

sions), so one can make changes guided by such measures.

We first compute a baseline: Euclidean distance on po-

sition and rotation vectors6. We then compute distances

on encoded latent vectors, both for same-player (Sub-

set 2) and for cross-player accuracy differences. For the

cross-player setting, we resample Subset 1 to generate a

set of dummy improvement pairs whose distribution of

accuracy gains matches Subset 2 but are from two play-

ers, to explore whether player identity affects the metric.

3. Results

3.1 RQ1: Indication of fine motor skills

As Figure 1 shows, the top 10 expert players have a

clear lead in average hand speed and head direction cor-

relation with incoming blocks. This shows better motor

execution befitting the game’s fast pace and also a more

integrated execution indicated by head movements coor-

dinated with the next target to cut. Novices also seem to

have larger variance in both movement metrics, but does

this mean they have more variance in “skills”? We move

on to the latent space to find out.

3.2 RQ2: The road towards mastery

In Figure 2, we plot the motif usage of 31 groups of

players from the lowest ranks (left) to the highest (right)

as a heatmap. Each column of the heatmap is the aver-

6as saber-tip positions to avoid erratic change at 180°

Fig. 2: Heatmap of motif distribution by rank

Fig. 3: Best line fit for motif entropy by rank

age distribution for one group of players (21 players per

group, arbitrarily chosen for presentation). The color at

each cell along this vertical strip (15 motifs in total, de-

fault parameter of [7]) indicates the proportion of frames

clustered under that particular motif. For example, the

lowest ranked groups concentrate on clusters 13 and 14,

using each of them about 25% of the time, whereas highly

ranked groups seem to have a more dispersed span over

all 15 motifs, only moderately favoring one or two.

Looking at the figure, instead of a ladder - a progres-

sion of successive motion units as one moves up the rank

of scores - we see a landscape, a diffusion-like process

where players start from a rather limited set of “novice”

motions but then spread out across the entire space of

motifs as they advance in ranks. This is also quanti-

tatively measured by the entropy for each group, with

a strong linear fit between entropy and rank (Figure 3,

slope=0.013/group) - an increasing diversity trend.

Our results here still look at experts and novices as

groups. We now know that experts are more diverse in

their skill sets, but how did each of them get there? Can

our model help understand the incremental steps in an

individual player’s journey toward mastery?

3.3 RQ3: Predictive metrics in the model

In this section, we look at the predictive power of our

model’s latent codes on accuracy improvements. Note

that we didn’t train the model to predict accuracy or any

goal-related information: its only target is to reconstruct

and predict the motion itself. So, any weakly predictable

result can be seen as indicative of future development,

should we include such additional targets.

As listed in Table 2, out of the three distance met-
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Table 2: R2 Values predicting Accuracy Gain

Measure R2 Value

Baseline (Same-player) 0.00

Latent (Same-player) 0.11

Latent (Cross-player) 0.03

rics we tested, latent codes on the same player is the

only one that can weakly predict the accuracy gain after

an improvement. This suggests its potential application

for learning, where learners would identify movements to

improve by looking at where the latent distance is the

largest between their recordings and the teacher.

On the other hand, the baseline metric is essentially

useless when predicting improvements. So, if we base a

guidance method on the raw distance between the learner

and the teacher, it won’t be much effective since closing

large gaps in head and hand positions doesn’t necessarily

lead to increased performance, at least in BeatSaber.

Finally, while the cross-player metric is better than the

baseline, it’s much worse than same-player pairs. This

further validates our understanding of the progression of

skill improvements in RQ2: When following a player’s

own development path, the further you go, the more you

improve; on the contrary, the distance between two arbi-

trary replays by two players will mix up their paths and

thus tells little about their accuracies.

4. Discussion

Our results first validate the use of non-controlled re-

play data to extract characteristics of motor skills in a

VR game, from the speed of hand swings to synchronized

head movements with incoming action targets. Com-

pared to non-VR video games, typical VR devices can

record more sensor data at high framerates, allowing for

more detailed analysis. We hope this will draw more

attention to such open data and consequently produce

more insights to help motor learning and beyond.

We then focus our analysis on the learning path of a

player’s movement patterns. We use an existing auto-

encoder model to generate cluster labels and study their

distributions. One possible limitation is the lack of tun-

ing and adaptation of this model, causing some players

only to have one single motif assigned to their entire re-

play, which is highly unlikely considering the complexity

of their movements. Nevertheless, the group-wide statis-

tics remain useful for an initial understanding of the pro-

gression of motor motif usage.

Across this diverse landscape of skill progression paths,

experts don’t all flock towards one single peak of mas-

tery - they march forward on an individual trek of self-

improvement and personal journey. It’s a more dynamic

view of the learning process and hopefully will lead to

more guidance designs that focus on individuality instead

of a single template of expertise.

In the end, the preliminary results on our model’s pre-

dictive power are only a hint at how it could be used for

such new methods. For example, one can use a model-

based distance to change control weights in a co-embodiment

setting dynamically. Or even better, we could deploy the

generative model to override our movements with a per-

sonal motion output, as if we ourselves were one rank

higher than our current level. Imagine embodying a fu-

ture expert version of yourself - it would be a liberating

learning experience.
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