This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

第 27 回日本バーチャルリアリティ学会大会論文集 (2022 年 9 月)

認知症当事者への共感を創出する AR 体験の提案

An Augmented Reality experience for empathising with dementia patients

沈 襲明 ¹⁾, Pai Yun Suen ¹⁾, 木内 大介 ²⁾, 鮑 柯含 ²⁾, 青木 朋美 ²⁾, 安藤 良一 ¹⁾, 大石 佳能子 ²⁾, 南澤 孝太 ¹⁾
Ximing Shen, Yun Suen Pai, Dai Kiuchi, Kehan Bao, Tomomi Aoki,
Ryoichi Ando, Kanoko Oishi, Kouta Minamizawa

1) 慶應義塾大学大学院メディアデザイン研究科 (〒 223-8526 横浜市港北区日吉 4-1-1, ximing.shen, kouta@kmd.keio.ac.jp)2) 株式会社メディヴァ (〒 158-0097 東京都世田谷区用賀 2-32-18 グレース用賀 301)

概要: 認知症の症状は中核症状である認知機能障害と周辺症状(BPSD)である精神症状・行動症状に 大別される。中核症状の改善は困難だが、BPSD は適切な介護によって軽減できる。そこで本研究では、 介護サービスの質を向上を目指し、医療従事者を主な対象とした、認知症当事者へ共感を創出する AR 体験を提案する。

キーワード: 認知症、教育、拡張現実

1. はじめに

認知症とは、脳細胞の損傷により、記憶障害や言語能力障害などの認知障害を引き起こす現象の総称である。WHO¹によると、現在世界で約5,000万人が発症しており、毎年平均して1,000万人が新たに発症していると推定されている。高齢化社会を迎えた現在、世界的な公衆衛生の課題となっている。

認知症の行動・心理症状(BPSD: Behavioral and Psychological Symptoms of Dementia) とは、認知症ケアにお いてよく使われる用語で、認知症当事者に起こりうる内外 のきっかけによる不適切な行動をまとめたものである[1]。 BPSD を減らすことは認知症ケアにおいて重要な課題であ り、その具体的な治療法としては、薬物療法と非薬物療法に 分けられる。薬理学的治療とは、認知症疾患の種類をター ゲットとした処方薬を用いる治療法であり、非薬理学的治 療とは、認知症当事者に優しい環境と思いやりのあるケア サービスを行う治療法である [2]。認知症のケアサービスで は、看護師が共感をもってあらゆる場面で慎重に行動する。 しかし、当事者の状態次第では、共感は困難となり、看護師 には当事者者の気持ちが理解できず、当事者の起こした行 為への適切な対応が行えないことがある。このように看護 師の共感は非薬理学的治療における重要な要素であり、そ の如何によっては、適切な治療を妨げうることが様々な臨 床現場で検証されている。

例えば Frans らによるシステマティックレビュー [3] で

¹https://www.who.int/news-room/factsheets/detail/dementia は、共感性が「一般診療における人間的な患者中心の方法の 基礎であり、専門性の重要な要素」であるとされているこう した患者-医師間のコミュニケーションとそれに伴う感情の 変化に関する初期の研究の1つには、前後のアンケート調 査を通じて、患者が実際に感情の変化について調査された 研究もある[4]。こうした背景から、現在、他人と共感する ための新しい手法として、VR や AR 技術を活用すること が注目されている。かねてより、ウォーターバッグ、セン サーなどを用いて妊婦の体験をする「MommyTummy」[5] など、自らの身体状態とは異なる状態を体験させる提案は 存在したが、近年では、ユーザーの腰にカメラを取り付け、 HMD を装着させて低い身長から見ることで自身が児童の身 長となる西田惇氏ら [6] の研究や、視覚を妨害する AR ヘッ ドセット、聴覚をシミュレートするイヤホン、当事者の不明 瞭な発音を理解することを目的とした発話を妨害するキャ ンディを用いて自閉症の経験を伝達する Kim²や、VR ヘッ ドセットと Leap Motion センサーを利用し、妊婦となった 自分のお腹をさする体験などができる「Preterna」3など、主 として HMD を用いることで多様な身体状態を体験する提 案が提案されている。

このように、VR 及び AR 技術は共感トレーニングに大きな可能性を持っており、それゆえ介護サービスや社会福

 $^{^2 {\}rm https://www.rca.ac.uk/research-innovation/}$

research-centres/helen-hamlyn-centre/helen_hamlyn_student _programme/helen_hamlyn_design

_awards/2016/empathy-bridge-autism/

 $^{^3} https://canadianart.ca/reviews/vr-and-the-failure-of-self-help-technology/$

祉に役立つ可能性があると言える。実際、本領域には株式 会社シルバーウッドが開発した「VR 認知症体験プロジェク ト」⁴など、すでに社会実装のステージに応用されはじめて いる事例もある。しかしながら、具体的な症例に即した体 験をより正確に再現する提案の不足など、未だ AR 技術を 活用した認知症当事者へ共感技能の発達サポートについて の研究は十分とは言えない現状がある。現在、視覚障害と 認知症リスクの相関については、Paik らによって示されて いる [7]。そしてこれら認知症当事者の経験する具体的な視 覚障害に関する症例としては、例えば瞳孔光応答の遅れ [8]、 周辺視野の喪失 [9]、色彩感度の低下 [10]、奥行き知覚の障 害 [11]、視力の低下 [12]、視覚運動感度 [13] などが示され ている。これら研究を礎とすることで、視覚への具体的症 例を活用した情報提示による認知症当事者への共感を支援 する新たなシステムを構築することが求められていること がわかる。

2. 設計及び実装

先行研究より明らかとなっている具体的な視覚障害事例 に即した AR 体験を用い、認知症当事者の見る世界を疑似 体験することで、認知症当事者に共感することができるのではないかという仮説を立てた。まず、先行研究より、以下の一般的な視覚症状を選択した。

- 瞳孔光応答の遅れ
- 周辺視野の喪失
- 色彩感度の低下
- 奥行き知覚の障害
- 視力の低下
- 視覚運動感度

次に、Unity 2021.1.3 を用いて開発したプロトタイプ AR アプリケーション上で、症状の疑似視覚化効果を作成した (図 1)。

3. ユーザビリティテスト

制作されたプロトタイプを用いて、2021 年 6 月 22 日に看護師 11 名と医師 5 名を対象にユーザビリティテストを実施した(図 2)。参加者には本アプリケーションの体験後、インタビュー調査を行った。

インタビューでは、「ここまで見えないなら、声のかけ方が変わってくる」、「認知症の人が歩いているときに、なぜ我慢しなければならないのかがわかった」「トイレで転倒するケースがよくあることがわかった」など認知症当事者への共感を示す感想や、「全部ぼやけて見える、あとは距離感がわからない」「めまいがする」「光の反射を水たまりと勘違いした」など実際に認知症当事者が体験する感覚に類似する感想が得られた。

2021 年 12 月 15 日~17 日に都内にて、170 名以上を対象に行ったユーザビリティテスト [14](図 3) では、体験後、

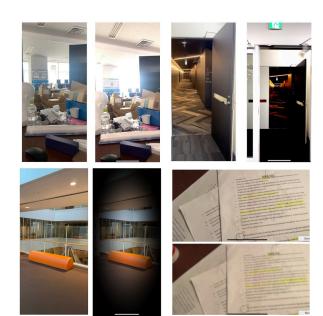


図 1: 症状の視覚化

図 2: 参加者が本アプリケーションを体験している様子

認知症当事者への理解を「1(強く反対)~5(強く賛成)」で評価してもらった。結果としては、41名の回答者のうち、73.2%(30名)が「5」に、19.5%(8名)が「4」に投票した。また、参加者は自由筆記にてアンケートに感想を記入した。その中には「没入体験をするからこそ当事者の気持ちを垣間見れた。」、「思っていた以上に見える世界が違うことに驚いた。」など認知症当事者への共感を示す感想が得られ、本提案が提出した認知症当事者へ共感を創出する目的への有効性が示された。

 $^{^4 \}rm https://peraichi.com/landing_pages/view/vrninchisho/$

図 3: SIGGRAPH Asia 現場にて

4. 考察とまとめ

本研究では、看護師の共感を得るために、実際に認知症当 事者が体験するだろう視覚障害を再現した AR アプリケー ションを用いて認知症体験を提供した。作成された AR プ ロトタイプはユーザビリティテストを経て、その有効性が示 された。今後は、「いかに現実通りの視覚障害を再現する」 ことと、「いかに効果的に共感を高めることができるか」と いう2つの方向性が考えうるが、認知症のケアの観点から 考えると、今後は後者に重点をおいて掘り下げて行くべき である。すなわち、いかに当事者同様の体験が再現できる かよりも、体験後に看護師の行動がどれだけ変わるか、そ れにより患者の BPSD がどれだけ減少するかといった、社 会的な効果について重点をおいて研究を優先したい。認知 症は幅広い領域であり、今後より包括的な認知症 AR 体験 のデザインが期待される。また、患者の家族などにも、認 知症当事者を一般の人が理解できる未来の支えとなること を願っている。

謝辞

本研究は経済産業省「サービス産業強化事業費補助金(認知症共生社会に向けた製品・サービスの効果検証事業)」、JST ムーンショット型研究開発事業「身体的共創を生み出すサイバネティック・アバター技術と社会基盤の開発」(JP-MJMS2013)、および JST「次世代研究者挑戦的研究プログラム」(JPMJSP2123)の支援を受けて行われた。

参考文献

- J. Cerejeira, L. Lagarto, and E. B. Mukaetova-Ladinska. Behavioral and psychological symptoms of dementia. *Frontiers in Neurology*, Vol. 3, May 2012.
- [2] Connie Lethin, Lottie Giertz, Emme-Li Vingare, and Ingalill Rahm Hallberg. Dementia care and service systems – a mapping system tested in nine swedish municipalities. BMC Health Services Research, Vol. 18, No. 1, Oct 2018.

- [3] Frans Derksen, Jozien Bensing, and Antoine Lagro-Janssen. Effectiveness of empathy in general practice: a systematic review. *British Journal of General Practice*, Vol. 63, No. 606, 2013.
- [4] Sandra van Dulmen and Atie van den Brink-Muinen. Each news. Patient Education and Counseling, Vol. 55, No. 1, p. 149–152, Oct 2004.
- [5] Takayuki Kosaka, Hajime Misumi, Takuya Iwamoto, Robert Songer, and Junichi Akita. "mommy tummy" a pregnancy experience system simulating fetal movement. ACM SIGGRAPH 2011 Emerging Technologies, 2011.
- [6] Jun Nishida, Soichiro Matsuda, Mika Oki, Hikaru Takatori, Kosuke Sato, and Kenji Suzuki. Egocentric smaller-person experience through a change in visual perspective. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019.
- [7] Ji-Sun Paik, Minji Ha, Youn Hea Jung, Gee-Hyun Kim, Kyung-Do Han, Hyun-Seung Kim, Dong Hui Lim, and Kyung-Sun Na. Low vision and the risk of dementia: a nationwide population-based cohort study. Scientific Reports, Vol. 10, No. 1, 2020.
- [8] Pratik S. Chougule, Raymond P. Najjar, Maxwell T. Finkelstein, Nagaendran Kandiah, and Dan Milea. Light-induced pupillary responses in alzheimer's disease. Frontiers in Neurology, Vol. 10, , 2019.
- [9] P. Brusini. Ageing and visual field data. British Journal of Ophthalmology, Vol. 91, No. 10, p. 1257–1258, 2007.
- [10] AliceCronin Golomb, Suzanne Corkin, Joseph F. Rizzo, Jennifer Cohen, John H. Growdon, Kathleen S. Banks. Visual dysfunction in alzheimer's disease: Relation to normal aging. *Annals of Neu*rology, Vol. 29, No. 1, p. 41–52, 1991.
- [11] W Mittenberg. Impaired depth perception discriminates alzheimer's dementia from aging and major depression. Archives of Clinical Neuropsychology, Vol. 9, No. 1, p. 71–79, 1994.
- [12] Neil S. Gittings and James L. Fozard. Age related changes in visual acuity. *Experimental Gerontology*, Vol. 21, No. 4-5, p. 423–433, 1986.
- [13] G. L. Trick and S. E. Silverman. Visual sensitivity to motion: Age-related changes and deficits in senile dementia of the alzheimer type. *Neurology*, Vol. 41, No. 9, p. 1437–1437, 1991.
- [14] Ximing Shen, Yun Suen Pai, Dai Kiuchi, Kanoko Oishi, Kehan Bao, Tomomi Aoki, and Kouta Minamizawa. Dementia eyes: Perceiving dementia with augmented reality. SIGGRAPH Asia 2021 XR, 2021.