This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

第27回日本バーチャルリアリティ学会大会論文集(2022年9月)

空中超音波を用いたエッジ感の非接触提示

加藤滉一¹⁾,森崎汰雄¹⁾,牧野泰才¹⁾,篠田裕之¹⁾ Koichi KATO, Tao MORISAKI, Yasutohi MAKINO, and Hiroyuki SHINODA

1) 東京大学 新領域創成科学研究科 (〒 277-8561 千葉県柏市柏の葉 5-1-5, kato@hapis.k.u-tokyo.ac.jp)

概要: 立方体のような仮想物体に触覚を付与する場合、その形状認識には面と角の知覚が不可欠な要素 である。従来の超音波触覚で使われていた振動触覚では、知覚解像度が低くこれが難しい。近年、高解 像に知覚できる圧覚の超音波による提示が可能になった。この圧覚を利用して、細く鋭いエッジ感の再 現を試みる。本研究ではこの圧覚を用いて細く鋭いエッジ感の再現を試み、従来の振動触覚と比較する ことでその有効性を確認する。

キーワード: 超音波触覚,空中触覚,エッジ感

1. 緒言

触覚提示技術は VR やゲーム、映画のようなエンターテイ メントに導入することで、そのコンテンツへの没入感の向上 などに利用される。空中超音波触覚ディスプレイ (Airborne Ultrasound Tactile Display: AUTD)を用いた空中触覚提 示技術 [1, 2, 3]を使えば、デバイスの装着の必要のない触 覚提示が可能である。AUTD とは、超音波振動子をアレイ 状に配置したデバイスである。AUTD は各振動子の位相を 制御して超音波を集束させることで、空中の任意の点に音 響放射圧と呼ばれる非接触な力を提示できる。AUTD は空 中タッチパネルや [4] 手の誘導 [5] など様々な研究に応用さ れている。

AUTD によって提示できる物理的な力は 0.4 mN 程度と 弱い。人間が知覚し続けられる力を提示するために、知覚 強度を向上させる手法として Amplitude Modulation 刺激 (AM 刺激) [6] と Lateral Modulation 刺激(LM 刺激)[7] が提案されてきた。AM 刺激は、提示する超音波の振幅を 周期的に変化させることで知覚強度を上げる手法で、皮膚 上のある点で提示力が変化し続けることで振動覚が提示で きる。LM 刺激とは、超音波焦点の位置を皮膚表面に沿って 微小に周期変位させることで、その知覚強度を上げる手法 である。

これまで AUTD は、この AM 刺激と LM 刺激を用いた 振動触覚提示が主な用途であったが、近年森崎らによって、 非振動の圧覚刺激を提示する変調条件も明らかになった [8]。 森崎らは、LM 刺激の超音波焦点の周期移動の周波数と空間 刻み幅を極端に小さくすることで、振動感のない圧覚を提 示できることを発見した。圧覚は振動触覚と比較して、高 い空間分解能で知覚される。また、圧覚は人間が物体に触 れたときに自然と生起するため、リアルな触覚再現におい て非常に重要である。

本研究では、この圧覚を生起する低周波-微小ステップな LM 刺激を指腹に提示することで、曲率が 2-5 mm 程度の エッジ感が提示できることを示す。LM における焦点軌道 は、指の向きに沿った長さ 14 mm の直線を用いる。ここ で、エッジ感とは立方体やピラミッドなど立体形状の角に 対し、指腹で静的に触れている感覚を指す。これまで超音 波触覚で用いられていた振動覚では、その知覚解像度の粗 さからリアルなエッジ感再現は困難であった。この圧覚に よるエッジ感を用いれば、角のある立体形状に触れた感覚 をよりリアルに超音波で再現できると考えられる。

これまでにも超音波を用いて角のある立体形状を再現し た例はあるが、その中のエッジ感という局所的形状が再現で きているか評価した例はない。松林らは立方体や三角錐と 指先の接触形状を LM 刺激を用いて再現した [9, 10]。LM 刺激の焦点軌道は、再現したい接触形状の外周であった。 Long らは複数焦点を用いて立体形状と手の接触形状を再現 した [11]。これらの研究ではエッジ感という局所形状につ いては個別に評価していない。また、これらの研究ではいず れも振動触覚が使われており、圧覚を用いて形状を指先に 提示した例もない。松林らは 100 Hz の LM 刺激を、Long らは 200 Hz の AM 刺激を使用した。

本実験では、超音波触覚による圧覚刺激を被験者の指先 に線状に提示することで、このエッジ感を知覚できる条件 および程度を調査する。さらに、圧覚を提示するためのLM 刺激にAM刺激の時空間的な振動を併せて付与することで、 エッジ感の知覚の変化を探る。

2. 原理

2.1 空中超音波触覚ディスプレイ (Airborne Ultrasound Tactile Display:AUTD)

本研究では空中触覚を提示するために空中超音波触覚ディ スプレイ(Airborne Ultrasound Tactile Display:AUTD) を用いた [1, 2, 3]。AUTD とは、振幅と位相を各々制御で きる超音波振動子をアレイ状に配置したデバイスである。各 振動子の位相を制御することで、空間上の一点に超音波を

図 1: 本実験で指上に提示した線状 LM 刺激の模式図

図 2: 実験装置構造図

集束させることができ、その点(焦点)には数グラムの音響放射圧と呼ばれる非接触な力が発生する。本実験では、1 台あたり 40 kHz で駆動する超音波振動子が 249 個配列さ れた AUTD を 4 台使用した。 [12, 13]

2.2 超音波による圧覚提示

本論文では、エッジ感の非接触提示のために超音波の Lateral Modulation 刺激(LM 刺激)による圧覚提示を用いた。 LM 刺激は超音波焦点の位置を皮膚上で周期変位させる刺 激法である。この LM 刺激において、変位のステップ幅を 微小にすることで振動感のない圧覚を提示することができ る。森崎らは5 Hz の LM 刺激の空間ステップ幅を 0.2 mm と細かくとることで、その刺激における振動感が 5%まで抑 制され圧覚として感じられることを報告した。また、その 際の知覚強度が 0.21 N 相当であったことも報告した。この LM 刺激における焦点の距離は 6 mm であり、手のひらの 中心に提示された。

3. 被験者実験

本実験では、超音波による線状のLM 刺激において、指 先で知覚する刺激の幅、および3通りの曲率の異なるエッ ジに対するリアリティさを評価した。また、LM 刺激とAM 刺激を同時に用いた刺激についても提示、比較した。AM 刺 激の周波数と振幅はそれぞれ4通りに変化させた。

図 3: 音圧分布シュミレーション

3.1 実験装置

図2に実験装置の外観を示す。この装置は空中触覚を提示 するための4台のAUTD、被験者の指先の位置情報および 深度情報をセンシングするためのカメラ(Intel Real Sense D435)で構成されている。ディスプレイ中心の15×15× 20 mmの領域に物体が侵入した際、その接触面積の重心を 焦点として超音波が照射される。超音波はガラス板表面か ら反射することで、指の腹に照射することができる。超音波 を反射させたのは立体映像ディスプレイ (SONY ELF-SR1) であったが、ここではその機能は使用せず、単なる反射板と して用いた。本セットアップにおいて、提示される超音波 刺激の放射圧分布はシミュレーションにより図3のように 示される。

3.2 実験手順

被験者は5人で、22-25歳の男性4人と女性1人であった。 本実験では、指の長手方向に14mm、5Hzで往復する LM刺激を与えた。別の条件として、LM刺激において移動 している焦点の振幅を変調した (AMをLMに重畳した)刺 激も提示した。また、AM刺激における振幅の変化幅と周波 数もそれぞれ4通りに変化させた。周波数は30,100,200, 200 Hzを用いた。振幅の変化幅は、最大振幅の25%,50%, 75%,100%を用いた。振幅に対する変調波形の例を図4に 示す。AM刺激の周波数の変調については、触覚受容器で あるマイスナー小体が30Hz付近で感度が良いこと、パチ ニ小体が100-300 Hzを知覚し200 Hz付近で感度が良いこ とからの分類である。以上の計17通りの刺激を、被験者に 対しランダムに提示した。また、2つの実験を2周行った。

実験1では、被験者は指先に刺激を提示され、指幅に対 して何%の提示力を感じるかを図5と照らし合わせ回答し た。実験2では、実験1と同様に指先に刺激を提示され、図 6に示される3つのエッジ形状から、それぞれの図形に対し て7段階リッカート尺度(1:全くリアリティがない、7:非 常にリアリティがある)で回答した。

4. 結果

4.1 実験1

実験1における実験結果を図7に示す。縦軸は刺激を感じた提示力の指に対する幅の割合、横軸は刺激のパラメータのうち AM 刺激の周波数及び比較のための LM 刺激であ

図 4: LM 刺激に重畳にした放射圧の時間変化 (AM 刺激)

図 5: 実験1 で提示した刺激範囲評価のための模式図

図 6:実験 2 で提示したエッジ感評価のための模式図。被 験者は各形状について、それぞれリアリティを回答した。

る。最小の平均刺激幅は 27%であり、その条件は LM 刺激 のみの場合であった。また、最大の平均刺激幅は 40%であ り、条件は振幅が 0.25、周波数が 200 Hz の AM 刺激を重 畳したものであった。

4.2 実験 2

実験2における実験結果を図8に示す。縦軸はリッカー ト尺度の回答値で横軸は実験1と同様である。また、結果 の値は被験者全員の平均値を、エラーバーは標準偏差を表 している。最もリアリティが高かったのはLM刺激のみの 図8-2の曲率のある角であり、その値は平均6であった。ま た、最もリアリティが低かったのは、同じくLM刺激のみ の場合で図8-1の鋭い角であり、その値は2.6であった。

5. 考察

本実験結果より、超音波による低周波の線状 LM 刺激を 指先に対し線上に提示することで曲率半径が 4 mm 程度の エッジ感を提示できることが示された。実験 2 の結果より、 LM 刺激だけを提示した場合、曲率半径が 4 mm の角 (図 8 中の 2) のリアリティは 6 点と高かった。振幅変調を与えた 場合でもこのリアリティは高く保たれ、提示した 17 条件中 9 条件で 5 以上であった。

また、LM 刺激の知覚幅は 4 mm(指先の 27%) と細く、

この刺激の細さは予想に反し、振幅変調 (振動感) を与えた 場合でも変化しなかった。この知覚幅は被験者の平均的な 指先サイズ 15 mm を用いて計算しており、図3に示した焦 点径と一致する。まず、30 Hz 変調において知覚幅が大きく 変化しなかったのは、この周波数帯においては受容野が比 較的狭いマイスナー小体が主に反応するためだと考えらえ る。次に、100 Hz 以上でも平均知覚幅が狭かった理由は、 受容野の広いパチニ小体と狭いメルケル細胞が同時に発火 し、このうちメルケル細胞の情報(圧覚刺激の定位位置)を 参考に刺激範囲を回答した被験者が多かったためだと考えら れる。実際に、100 Hz 以上においては平均的な刺激範囲は 36%と狭いもののその分散は大きくなっている。このうち 大きい刺激範囲を回答した被験者はパチニ小体 (振動覚)の 範囲を、狭い範囲を回答した被験者はメルケル細胞 (圧覚) の範囲を回答したと考えらえる。被験者も「刺激の圧力分 布が一様でなく、刺激の中心で強く感じることがあった」と コメントしており、これは我々の考察と一致している。

また、被験者から AM 刺激の重畳によって粒々感を感じ る等テクスチャに関するコメントが得られていることや、実 験 2 の 200 Hz の AM 刺激重畳において図 6-1 の鋭い角の 評価が高いなど、興味深い結果ではあるが本実験結果から は考察できない事象が存在した。これらは今後の課題とし て解明に取り組む。

6. 結言

本論文では、超音波による圧覚刺激を応用した触感とし て、立方体のような形状のうち角のエッジ感の提示を試み た。LM 刺激による圧覚提示、さらに AM 刺激を付加した ものを被験者の指先に線上に提示する手法を用いた。

被験者実験では、提示された指先の刺激に対し、刺激の 幅と3つのエッジ形状に対するリアリティを評価した。そ の結果、被験者の個人差はあるものの、圧覚刺激のみのも のでは平均値として曲率半径4 mm 程度のエッジ感の提示 が示唆された。また、AM 刺激の付加によってテクスチャ感 のような振動感覚によるエッジ感の変化も示唆された。今 後は試験者数を増やすことで結果を明確にすることや、立 体映像およびエッジ感以外の触感と組み合わせる場合につ いても調査を行う予定である。

謝辞 本研究は JST CREST JPMJCR18A2 および科研費 21J12305 の助成を受けたものである。

図 8: 実験 2: 知覚したエッジ感のリアリティ

参考文献

- T. Iwamoto, M. Tatezono, and H. Shinoda, "Noncontact method for producing tactile sensation using airborne ultrasound," in *International Conference on Human Haptic Sensing and Touch Enabled Computer Applications*. Springer, 2008, pp. 504– 513.
- [2] T. Hoshi, M. Takahashi, T. Iwamoto, and H. Shinoda, "Noncontact tactile display based on radiation pressure of airborne ultrasound," *IEEE Transactions on Haptics*, vol. 3, no. 3, pp. 155–165, 2010.
- [3] T. Carter, S. A. Seah, B. Long, B. Drinkwater, and S. Subramanian, "Ultrahaptics: multi-point mid-air haptic feedback for touch surfaces," in *Proceedings* of the 26th annual ACM symposium on User interface software and technology, 2013, pp. 505–514.
- [4] Y. Monnai, K. Hasegawa, M. Fujiwara, K. Yoshino, S. Inoue, and H. Shinoda, "Haptomime: mid-air haptic interaction with a floating virtual screen," in *Proceedings of the 27th annual ACM symposium* on User interface software and technology, 2014, pp. 663–667.
- [5] S. Suzuki, M. Fujiwara, Y. Makino, and H. Shinoda, "Midair hand guidance by an ultrasound virtual handrail," in 2019 IEEE World Haptics Conference (WHC). IEEE, 2019, pp. 271–276.
- [6] K. Hasegawa and H. Shinoda, "Aerial vibrotactile display based on multiunit ultrasound phased array," *IEEE transactions on haptics*, vol. 11, no. 3, pp. 367–377, 2018.
- [7] R. Takahashi, K. Hasegawa, and H. Shinoda, "Lateral modulation of midair ultrasound focus for inten-

sified vibrotactile stimuli," in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Springer, 2018, pp. 276– 288.

- [8] T. Morisaki, M. Fujiwara, Y. Makino, and H. Shinoda, "Non-vibratory pressure sensation produced by ultrasound focus moving laterally and repetitively with fine spatial step width," *IEEE Transactions on Haptics*, vol. 15, no. 2, pp. 441–450, 2021.
- [9] A. Matsubayashi, Y. Makino, and H. Shinoda, "Direct finger manipulation of 3d object image with ultrasound haptic feedback," in *Proceedings of the* 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–11.
- [10] A. Matsubayashi, H. Oikawa, S. Mizutani, Y. Makino, and H. Shinoda, "Display of haptic shape using ultrasound pressure distribution forming cross-sectional shape," in 2019 IEEE World Haptics Conference (WHC). IEEE, 2019, pp. 419–424.
- [11] B. Long, S. A. Seah, T. Carter, and S. Subramanian, "Rendering volumetric haptic shapes in midair using ultrasound," ACM Transactions on Graphics (TOG), vol. 33, no. 6, pp. 1–10, 2014.
- [12] S. Suzuki, S. Inoue, M. Fujiwara, Y. Makino, and H. Shinoda, "Autd3: Scalable airborne ultrasound tactile display," *IEEE Transactions on Haptics*, vol. 14, no. 4, pp. 740–749, 2021.
- [13] S. Inoue, Y. Makino, and H. Shinoda, "Scalable architecture for airborne ultrasound tactile display," in *International AsiaHaptics conference*. Springer, 2016, pp. 99–103.